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Rice’s ansatz for overdampedf4 kinks at finite temperature
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The dynamics of a kink driven by noise is analyzed using the two collective variables of the Rice ansatz:
position and width. Starting from a stochastic partial differential equation, with thef4 potential in the over-
damped limit, the pair of stochastic differential equations for the collective variables are derived without
approximation other than the ansatz itself. From the steady state probability density of the kink width, the
diffusivity of a kink is calculated.
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Extended nonlinear systems often exhibit localized str
tures, such as moving domain walls, that move about un
the influence of perturbations@1–4#. The f4 equation stud-
ied in this work can be used to model such structures
multiple dimensions, but we restrict ourselves to one sp
dimension, where they are known as kinks@3#. The one-
dimensional equation, as well as serving as a general m
for a chain of coupled double-well oscillators@5#, has been
used to model specific physical systems such as the poly
polyacetalene@6#, charge-density-wave condensates@7#, and
Josephson-junction transmission lines@8#.

Analytical progress towards understanding the dynam
of kinks can be made using a known exact solution,F(x), of
the unperturbed equation that determines the characte
shape of the structure. An approximate formula or ‘‘ansa
for the configuration at timet is f(x,t)5F„x2X(t)…, where
X(t), the position of the center of the structure at timet, is
considered as a dynamical variable or ‘‘collective coor
nate’’ @9,10#.

Although kinks behave like point particles in many c
cumstances@4,11#, it is possible to find signatures of th
internal mode of a kink@12# by, for example, adding a peri
odic perturbation and looking for resonances@13#. The fre-
quency associated with the interval mode has a differ
physical origin from that associated with the localized pe
odic modes known as breathers found in some systems@14#.
The latter is a bound state of a kink and antikink, whereas
internal mode is present in a single isolated kink.

A simple analytical model for the dynamics of a sing
kink including the internal mode of a kink is obtained v
Rice’s ansatz, where the solution is assumed to be of
form F„(x2X(t))/G(t)… @15#. That is, both the kink width
G(t) and positionX(t) are collective coordinates.

Rice considered the underdamped, noiseless dynamic
a f4 field. He derived reduced equations for the kink wid
and position, and found solutions in which the kink wid
oscillates@15#. While the solutions he found do not corre
spond to exact solutions of the partial differential equati
the characteristic frequency found for the oscillations of
kink width is very close to that found in a formal expansi
of the solution of the partial differential equation@16#. The
latter frequency corresponds to the eigenvalue of the ‘‘sh
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mode ’’ eigenfunction obtained on linearising about a sin
kink solution @3#. Quantitative predictions, obtained usin
the Rice ansatz, of resonances in the response of af4 field to
periodic driving have been confirmed by numerical solutio
of the partial differential equation@13,17#.

We shall study the overdamped, noisy dynamics gover
by the stochastic partial differential equation~SPDE! for a
field whose value at positionx and time t is denoted by
ft(x):

]

]t
ft~x!5ft~x!2ft

3~x!1
]2

]x2
ft~x!1~2kT!

1
2ht~x!.

~1!

The last term in Eq. ~1! is space-time white noise
^ht(x)ht8(x8)&5d(x2x8)d(t2t8); the amplitude of the
noise is (2kT)1/2, whereT has the interpretation of tempera
ture andk of Boltzmann’s constant.

The functionF(x) is a stationary solution of the unpe
turbed equation. That is,F(x) satisfies

F~x!2F3~x!1
]2

]x2
F~x!50, ~2!

with the boundary conditionsF(x)→61 asx→6`. In the
case of thef4 equation, the stationary solution isF(y)
5tanh(y/A2). Because the perturbations we consider are
chastic, we implement Rice’s ansatz as follows:

ft~x!5FS x2Xt

Gt
D . ~3!

The kink position and width are now stochastic proces
whose values at timet are denoted byXt andGt . We shall
derive the corresponding pair of coupled stochastic differ
tial equations. The resulting steady state distribution ofGt

and the diffusivity,D r5
1
2 limt→`^Xt

2&/t, will be calculated
exactly. The pair of coupled stochastic differential equatio
~SDEs! for Xt andGt have the form

dXt5a~Xt ,Gt!dt1s~Xt ,Gt!dWt
(x) , ~4!
©2003 The American Physical Society01-1
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dGt5b~Xt ,Gt!dt1r~Xt ,Gt!dWt
(g) , ~5!

where ^dWt
(x)dWt

(x)&5^dWt
(g)dWt

(g)&5d(t2t8)dt. The
functionsa(x,g), b(x,g), s(x,g) andr(x,g), and possible
correlations between the Wiener processesWt

(x) andWt
(g) are

to be determined. We use the Ito convention to perfo
changes of variables; exactly equivalent results can be
tained using the Stratonovich convention.

In order to carry out the reduction of the SPDE~1!, we
write, using the notation of stochastic differentials, the S
for the evolution of the field at a pointx:

dft~x!5S ft~x!2ft
3~x!1

]2

]x2
ft~x!D dt1~2kT!1/2dBt~x!,

~6!

where ^dBt(x)dBt8(x8)&5d(x2x8)d(t2t8)dt. In particu-
lar, for a square integrable functionf (x),

E
2`

`

@ f ~x!dBt~x!#dx5S E
2`

`

f 2~x!dxD 1/2

dWt . ~7!

Because the functionF(y) satisfies Eq.~2! and

]2

]x2
ft~x!5Gt

22F9S x2Xt

Gt
D , ~8!

we can rewrite Eq.~6! as

dft~x!5~211Gt
22!F9S x2Xt

Gt
Ddt1~2kT!1/2dBt~x!.

~9!

We proceed to rewrite the left-hand side of Eq.~9! using
ansatz~3!, general form~4! and ~5! and the Ito formula for
change of variables:

dft~x!52Gt
21F8S x2Xt

Gt
DdXt

1
1

2
Gt

22F9S x2Xt

Gt
Ds2~Xt ,Gt!dt

2~x2Xt!Gt
22F8S x2Xt

Gt
DdGt

1
1

2 F ~x2Xt!
2Gt

24F9S x2Xt

Gt
D

12~x2Xt!Gt
23F8S x2Xt

Gt
D Gr2~Xt ,Gt!dt.

~10!

Equating Eqs.~9! and ~10! gives a differential relation a
each space pointx. To find an equation for the evolution o
the stochastic collective variableXt , we multiply each equa-
tion by F8@(x2Xt)/Gt# and integrate overx. Because
F8(y) is an even function ofy, we obtain
02760
b-

dXt5S 2kT

Ek
GtD 1/2

dWt
(x) , ~11!

where

Ek5E
2`

`

@F8~u!#2du5S 8

9D 1/2

. ~12!

Comparing with Eq. ~4!, we find that a(x,g)50 and
s(x,g)5@(2kT/Ek)g#1/2.

To find the SDE forGt , we multiply ~9! and Eqs.~10! by
(x2Xt)F8((x2Xt)/Gt) ~an odd function ofx2Xt) and in-
tegrate overx

2a rEkGtdGt2
1

4
Eks

2~Xt ,Gt!dt

1~2 3
4 a rEk1a rEk!r

2~Xt ,Gt!dt

52
1

2
EkGt

2~211Gt
22!1Gt~2kTa rEkGt!

1/2dWt
(g) ,

where^dWt
(x)dWt

(g)&50 and

a rEk5E
2`

`

x2F8~x!2dx5A8

9S p2

6
21D50.608•••.

~13!

Thus

dGt52
1

2
a r

21~Gt2Gt
21!dt1

1

4
Gt

21
„2a r

21s2~Xt ,Gt!

1r2~Xt ,Gt!…dt1S 2kT

a rEk
GtD 1/2

dWt
(g) . ~14!

Inserting

s2~Xt ,Gt!5
2kT

Ek
Gt

and

r2~Xt ,Gt!5
2kT

a rEk
Gt ,

we obtain

dGt52
1

2
a r

21~Gt2Gt
21!dt1S 2KT

a rEk
GtD 1/2

dWt
(g) .

~15!

The pair of SDEs~11! and~15! are the required equation
of motion. Note thatdXt and dGt are independent of the
kink position at timet, which is a mean zero, Gaussian ra
dom variable. To obtain the diffusivity of a kink, we fin
from Eq. ~11!,

D r5
1

2
lim
t→`

^Xt
2&

t
5

kT

Ek
lim
t→`

^Gt&. ~16!
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The SDE~15! cannot be solved analytically, but we can o
tain the statistics ofGt ast→`, which is all that is required
to evaluate Eq.~16!. Let Rt(y) be the probability density o
Gt :

Rt~y!5
d

dy
P@Gt,y#. ~17!

Then, from Eq.~15!, the steady state density ofGt is given
by @18#

lim
t→`

Rt~y!5N21y21expF2
Ek

2kT S y1
1

yD G , ~18!

where

N5E
0

`

y21expF2
Ek

2KT S y1
1

yD Gdy52K0S Ek

KTD . ~19!

The functionK0 is the modified Bessel function of the se
ond kind of order zero. Note that the constanta r determines
the time scale of the evolution ofGt , but does not appear in
the steady state density.

The steady state density~18! is peaked close toGt51,
but is asymmetrical. See Fig. 1. Ast→`, the mean value for
Gt is given by

lim
t→`

^Gt&5N21E
0

`

expF2
Ek

2kT S y1
1

yD Gdy

5

K1S Ek

kTD
K0S Ek

kTD
511

1

2

kT

Ek
2

11

128S kT

Ek
D 2

1•••. ~20!

FIG. 1. The steady state density of the kink widthGt is shown
for two values ofkT.
02760
The mean value ofGt in the steady state is seen to be larg
by terms in powers of (kT/Ek), than the simplest approxi
mation which isGt51. The kink diffusivity under the Rice
ansatz is given by

D r5
1

2
lim
t→`

^Xt
2&

t

5
kT

Ek
lim
t→`

^Gt&

5
kT

Ek

K1S Ek

KTD
K0S Ek

kTD ~21!

5
kT

Ek
S 11

1

2

kT

Ek
2

11

128S kT

Ek
D 2

1••• D . ~22!

The kink diffusivity calculated under the simpler ‘‘fixe
shape’’ ansatz ft(x)5F(x2Xt) is found to be D f
5(kT/Ek) @19–26#. We see that taking the shape mode in
account produces terms of higher order in (KT/Ek).

In Fig. 2 we plot diffusivity~22! that results from the Rice
ansatz as a function ofKT. We also display kink diffusivities
estimated numerically from direct numerical simulations
SPDE ~1!. We solved the equation of motion with period
boundary conditions, starting with a kink and antikink wi
separationL/2 on a ring of perimeterL. With these initial
conditions, we measured the mean time to collision of kin
antikink pairs. Under the assumption that kinks and antikin
perform independent Brownian motion with diffusivityD,
the mean collision timêt& of two kinks initially separated
by L/2 on a ring with circumferenceL is given by

^t&5
L2

8D
. ~23!

FIG. 2. The diffusivity of a kink under the Rice ansatz~solid
line!. The dotted line is 1/kT. Also shown are numerical results
from solution of SPDE~1! with L5200.
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The Rice ansatz explicitly takes into account the sh
mode and gives contributions, at higher than linear orde
(kT/Ek), to the kink diffusivity calculated from the fixed
shape ansatz. However, it does not explicitly take into
count the influence of extended ‘‘phonon’’ modes@3#. It may
be expected that, once phonon modes are included in ana
r,

d

ns

02760
e
in

-

ti-

cal calculations, the predicted diffusivity of a kink will b
still closer to the numerical results of Fig. 2, with larg
coefficients in the nonleading terms in Eq.~22!. Indications
are that there is indeed a positive contribution from phon
modes@27–29#, although the calculations are much length
than those that result from the Rice ansatz.
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