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Rice’s ansatz for overdampedeg” kinks at finite temperature
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The dynamics of a kink driven by noise is analyzed using the two collective variables of the Rice ansatz:
position and width. Starting from a stochastic partial differential equation, withpthpotential in the over-
damped limit, the pair of stochastic differential equations for the collective variables are derived without
approximation other than the ansatz itself. From the steady state probability density of the kink width, the
diffusivity of a kink is calculated.
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Extended nonlinear systems often exhibit localized strucmode " eigenfunction obtained on linearising about a single
tures, such as moving domain walls, that move about undefink solution [3]. Quantitative predictions, obtained using
the influence of perturbatiorfld—4]. The ¢* equation stud- the Rice ansatz, of resonances in the responsedffeeld to
ied in this work can be used to model such structures ir'periodic driving have been confirmed by numerical solutions
multiple dimensions, but we restrict ourselves to one spacef the partial differential equatiofi.3,17.
dimension, where they are known as kinld. The one- We shall study the overdamped, noisy dynamics governed
dimensional equation, as well as serving as a general modBY the stochastic partial differential equaticBPDB for a
for a chain of coupled double-well oscillatofS], has been field whose value at position and timet is denoted by
used to model specific physical systems such as the polymeb(X):
polyacetaleng6], charge-density-wave condensaftés and
Josephson-junction transmission liri&s. d 5 92 1

Analytical progress towards understanding the dynamics 3 ®t(X) = ()= &{(x)+ §¢t(x)+(2kT)2’7t(x)-
of kinks can be made using a known exact solutix), of (1)
the unperturbed equation that determines the characteristic
shape of the structure. An approximate formula or “ansatz’The last term in Eq.(1) is space-time white noise:
for the configuration at timeis ¢(x,t) = ®(x— X(t)), where (p(X) g (X"))=8(x—x")8(t—t'); the amplitude of the
X(t), the position of the center of the structure at timés  nojse is (XT)*2 whereT has the interpretation of tempera-
considered as a dynamical variable or “collective coordi-tyre andk of Boltzmann’s constant.
nate” [9,10]. The function®(x) is a stationary solution of the unper-

Although kinks behave like point particles in many Cir- tyrbed equation. That ish(x) satisfies
cumstanceg4,11], it is possible to find signatures of the
internal mode of a kink12] by, for example, adding a peri- 92
odic perturbation and looking for resonandés]. The fre- d(x)— D3(x)+ —P(x)=0, (2)
guency associated with the interval mode has a different IX
physical origin from that associated with the localized peri- . .
odic modes known as breathers found in some sysfajs ~ With the boungary condition®(x) — =1 asx— . In the
The latter is a bound state of a kink and antikink, whereas th§2S€ Of thes” equation, the stationary solution B(y)
internal mode is present in a single isolated kink. =tanh6//\;2)._Because the_ p?rturbatlons we consider are sto-

A simple analytical model for the dynamics of a single hastic, we implement Rice’s ansatz as follows:
kink including the internal mode of a kink is obtained via
Rice's ansatz, where the solution is assumed to be of the d,t(x):q)(x_xt)_ 3
form & ((x— X(t))/G(t)) [15]. That is, both the kink width Gt
G(t) and positionX(t) are collective coordinates. ) N ] .

Rice considered the underdamped, noiseless dynamics € Kink position and width are now stochastic processes
a ¢* field. He derived reduced equations for the kink width Whose values at timeare denoted by, andG,. We shall
and position, and found solutions in which the kink width derive the corresponding pair of coupled stochastic differen-
oscillates[15]. While the solutions he found do not corre- tial equations. The resulting steady state distributiorGof
spond to exact solutions of the partial differential equation@nd the diffusivity,D = 3lim,_..(X?)/t, will be calculated
the characteristic frequency found for the oscillations of theexactly. The pair of coupled stochastic differential equations
kink width is very close to that found in a formal expansion (SDES for X; andG; have the form
of the solution of the partial differential equati¢m6]. The
latter frequency corresponds to the eigenvalue of the “shape dX;=a(X,G)dt+o(X;,G)dW(, 4
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thZb(Xt,Gt)dt+P(Xt,Gt)dW§9), ©)

where (dWXdW®)=(dw@dw D)= s(t—t')dt. The
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functionsa(x,q), b(x,9), o(x,g) andp(x,g), and possible where

correlations between the Wiener proce andW? are

to be determined. We use the Ito convention to perform
changes of variables; exactly equivalent results can be ob-

tained using the Stratonovich convention.
In order to carry out the reduction of the SPDE, we

2kT |\
dXt=<—Gt) dw®, (11)
Ex
© 12
e [ 1o wpau( g 12

Comparing with Eq.(4), we find that a(x,g)=0 and

write, using the notation of stochastic differentials, the SDEo(X,9) =[(2kT/E)g]*2

for the evolution of the field at a point

2

Bi(X)— B (x)+ %(ﬁt(x) dt-+(2kT)Y2dBy(x),
(6)

where (dBy(x)dBy/(x")) = 8(x—x")8(t—t")dt. In particu-
lar, for a square integrable functidix),

d¢t(x):<

o

» 12
fx[f(x)dBt(x)]dXZ( foofz(x)dx) dw,. (7

Because the functiofP(y) satisfies Eq(2) and

&2 _ _2 "(X_Xt)
E@(X)—Gt @ G, ) (8)
we can rewrite Eq(6) as
-2 X_Xt
dé(x)=(—1+G; )<1>"(T dt+ (2kT)¥adBy(x).
t
9

We proceed to rewrite the left-hand side of EE) using
ansatz(3), general form(4) and(5) and the Ito formula for
change of variables:

X_Xt
G,

dq’;t(x):—Gt_ld)’( )dxt

1
2

X_Xt

+ G,

G;an"( )O'Z(Xt ,G,)dt

X—Xt
G

—(x—Xt)GtZCD’( )th

- n X_Xt
(X=X ?G; ‘@ (T)

1
2 :

X_Xt 2
. p(Xy,Gy)dt.

(10

+2(x—Xt)Gt3<I>’(

Equating Eqgs.(9) and (10) gives a differential relation at
each space poirk To find an equation for the evolution of
the stochastic collective variablg , we multiply each equa-
tion by ®'[(x—X;)/G;] and integrate overx. Because

®'(y) is an even function of, we obtain

To find the SDE forG;, we multiply (9) and Egs(10) by
(X=X P’ ((x—X;)/Gy) (an odd function ok—X,) and in-

tegrate overx

1
~ B GdG,— 7 Ea?(X,, Gyt
+ (= feErt o E) p?(X¢, Gy)dt

1
=— CEGX(—1+G; %)+ G(2kTa,E Gy YdW(

2
\[ g —2—1 =0.608
9\ 6 '

(13

where(dW®dw¥)=0 and

a,E = f, X2’ (x)2dx=

Thus

1 R T
dGi=~ 5 a; (G— G Hdt+ 76 (-~ a; 'o%(X(,Gy)

2kT |12
+p%(X(,Gy))dt+ aEth) dw(9 (14
r
Inserting
, 2kT
g (thGt):E_th
and
’ 2KT
P (Xtht):a_Ethv
r
we obtain
1, . 2KT |12
dG=— S e, (GG Hdt+ aEth dw(@
r
(15

The pair of SDE<11) and(15) are the required equations
of motion. Note thatdX; and dG; are independent of the
kink position at timet, which is a mean zero, Gaussian ran-
dom variable. To obtain the diffusivity of a kink, we find
from Eq. (1),

D—ll' <>(t2>—kTI' G
=5lim— —E—lm( -

(16)

t—oo kt*}oo
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FIG. 1. The steady state density of the kink wi@his shown
for two values ofkT.

The SDE(15) cannot be solved analytically, but we can ob-
tain the statistics o6, ast— o, which is all that is required
to evaluate Eq(16). Let R,(y) be the probability density of
G;:

d
Ri(y)= @P[Gt<y]- (17

Then, from Eq.(15), the steady state density &; is given
by [18]

. (19

Ey 1
; _N-1,-1 _ -
IMR(y)=N""y ex;{ KT y+ y)

t—oo

where

[yt ]

The functionKj is the modified Bessel function of the sec-
ond kind of order zero. Note that the constantdetermines
the time scale of the evolution @&, , but does not appear in
the steady state density.

The steady state densit{t8) is peaked close t&;=1,
but is asymmetrical. See Fig. 1. As>o, the mean value for

G, is given by
f ) B v+ 2) g
o exp — m Yy y Yy

=

L2
kT YTy

y

E
dy=2KO(K—_'|<_). (19)

t—ow
3

"

Ex
kT
Ex
kT
1kT 11

128

(20

|

kT)\?
Ex
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FIG. 2. The diffusivity of a kink under the Rice ansdsolid
line). The dotted line is KT. Also shown are numerical results,
from solution of SPDE1) with L=200.

The mean value o; in the steady state is seen to be larger,
by terms in powers of KT/E,), than the simplest approxi-
mation which isG;=1. The kink diffusivity under the Rice
ansatz is given by

1
§|Im

(X2)
t

D,
t—o
kT

= lim(G;)

kt*):)o

(21)

kT
" E

1 1 kT 11
T2E. 128

| 2l
The kink diffusivity calculated under the simpler “fixed
shape” ansatz ¢ (x)=d(x—X,) is found to be D;
=(kT/E}) [19-26. We see that taking the shape mode into
account produces terms of higher order KiT(E,).

In Fig. 2 we plot diffusivity(22) that results from the Rice
ansatz as a function &T. We also display kink diffusivities
estimated numerically from direct numerical simulations of
SPDE(1). We solved the equation of motion with periodic
boundary conditions, starting with a kink and antikink with
separationL/2 on a ring of perimetet. With these initial
conditions, we measured the mean time to collision of kink-
antikink pairs. Under the assumption that kinks and antikinks
perform independent Brownian motion with diffusivity,
the mean collision timé ) of two kinks initially separated
by L/2 on a ring with circumferenck is given by

(22

LZ

("=8p" (23)
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The Rice ansatz explicitly takes into account the shapeal calculations, the predicted diffusivity of a kink will be
mode and gives contributions, at higher than linear order irstill closer to the numerical results of Fig. 2, with larger
(KT/E}), to the kink diffusivity calculated from the fixed coefficients in the nonleading terms in HE2). Indications
shape ansatz. However, it does not explicitly take into acare that there is indeed a positive contribution from phonon
count the influence of extended “phonon” modé&d. It may  modeq 27-29, although the calculations are much lengthier
be expected that, once phonon modes are included in analythan those that result from the Rice ansatz.
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